УДК 663.241.019: 663.256.15

DOI 10.30679/2587-9847-2020-28-172-176

О ПРИМЕНЕНИИ ИОННОГО ОБМЕНА ДЛЯ СТАБИЛИЗАЦИИ КОНЬЯКА

Агеева Н.М., д-р техн. наук, **Марковский М.Г.,** канд. техн. наук, **Аванесьянц Р.В.,** д-р техн. наук

Федеральное государственное бюджетное научное учреждение «Северо-Кавказский федеральный научный центр садоводства, виноградарства, виноделия» (Краснодар)

Реферам. Показано, что применение сорбента марки Термоксид-3А для обработки коньяков в динамическом режиме обеспечивает снижение концентрации катионов калия, кальция, натрия, магния, железа, меди и способствует профилактике помутнений.

Ключевые слова: сорбент марки Термоксид-3A, катионы меди, железа, щелочных элементов, помутнение коньяка

Summary. It has been shown that the use of Termoxid-3A sorbent for processing of cognacs in dynamic regime ensures a reduction in the concentration of potassium, calcium, sodium, magnesium, iron, copper and helps to prevent turbid process.

Key words: termoxide-3A sorbent, cations of copper, iron, alkaline and alkaline elements, darkness of cognac

Введение. Коньяки — относительно стойкие напитки. Однако в них после или в процессе длительного хранения наблюдаются помутнения с образованием осадков. Отечественными и зарубежными учеными осадки выявлены как в ординарных, т.е. молодых коньяках — 3-5 звездочек, так и в марочных, выдержанных 6 и более лет.

К числу наиболее важных факторов дестабилизации коньяков относятся катионы металлов [1-5]:

- железа, участвующего в окислительных процессах, а также в реакциях взаимодействия с белками с образованием комплексных соединений и фенольными веществами с образованием танидов;
- кальция, взаимодействие которого с высокомолекулярными соединениями коньяка приводит к образованию обратимых коллоидных помутнений;
- калия, образующего кристаллические осадки при пониженных температурах или при перепадах температур;
- натрия, растворимость солей которого при их высокой концентрации в водноспиртовом растворе коньяка снижается, в результате чего образуются осадки.

Большинство технологических приемов стабилизации коньяков заимствовано из виноделия [6, 7]. Это обработки белковыми препаратами – желатином, альбумином, рыбьим клеем, бентонитом, ЖКС. Для удаления избытка металлов из коньячных дистиллятов обычно применяют ЖКС. Однако ее применение вызывает большие неудобства – минимальное количество железа, которое должно оставаться после обработки равно 2 мг/дм³, тогда как допустимая концентрация железа по ГОСТ Р не должна превышать 1,5 мг/дм³. Кроме того, реакция протекает медленно, возможны переоклейки, в результате чего после обработки коньяк может потемнеть, если фильтры содержали даже небольшое количество железа.

Для предупреждения помутнений, вызываемых металлами, рекомендовано использование фитина, афферина, фитатов кальция и магния, полифосфатов, гексаметафосфатов натрия, альгината натрия, трилона Б, НТФ (фосфорный эфир нитрилотриметил фосфоновой кислоты), фосфорного эфира целлюлозы, желтой кровяной соли (ЖКС), лимонной кислоты, сетчатого полисахарида, ионообменных смол селективного действия, однако эти методы — всего лишь рекомендация, а на практике винодел продолжает испытывать трудности деметаллизации вин и, особенно, коньяков и бренди [8-10].

В последние годы специалисты коньячной отрасли снова обратили внимание на использование ионного обмена для стабилизации коньячной продукции [11-14]. Разработан современный эффективный способ производства эфира фосфорной кислоты (ФЭЦ), эфира фосфорный целлюлозы (ЭФЦ), являющегося катионнообменным сорбентом, полученным на основе природной целлюлозы [15]. Возобновлены исследования по применению фосфата циркония с названием Термоксид-3A, синтезированного золь-гель методом [16, 17].

Цель работы – провести сравнительный анализ влияния различных технологических обработок коньяков на концентрацию катионов металлов.

Объекты и методы исследований. Исследования по деметаллизации проводили в динамическом режиме (в потоке) на коньяках 3, 4, 5 звёздочек и КВВК различных отечественных производителей. Для деметаллизации коньяков применяли следующие иониты: ФЭЦ — фосфорный эфир целлюлозы, представляющий собой текстильный материал с активированной поверхностью, известный еще в прошлом веке; ЭФЦ — эфир фосфорный целлюлозы, катионообменник на основе природной целлюлозы; Термоксид -3А — сорбент сферической грануляции на основе фосфата циркония, синтезированного золь-гель методом [16]. Учитывая, что коньяк имеет невысокую вязкость, колонку заполнили сорбентами-ионитами в количестве 20 г. Объем коньяка, пропущенного через колонку, составлял 1 дм³. По окончании фильтрации всего объёма коньяка, кроме катионов калия, натрия, магния и кальция, определяли концентрацию меди и железа, влияющих на качество и стабильность коньяков. Отбор проб проводили через каждые 100 мл. Средняя проба представляла собой весь объем коньяка, пропущенный через колонку.

Массовую концентрацию катионов щелочных и щелочно-земельных элементов определяли методом капиллярного электрофореза (Капель 105 Р, Люмэкс, Россия). Массовую концентрацию катионов меди и железа – методом атомно-абсорбционной спектрофотометрии (Квант Z, Россия).

Осуждение результатов. Сравнительный анализ экспериментальных данных (табл. 1) показал, что ионообменники эффективны для обработки коньяков, особенно Термоксид-3A в сравнении с классической технологией - обработкой холодом. Независимо от марки коньяка обработка ионитами обеспечивала значительное снижение концентрации калия, натрия, кальция, магния и железа, а катионы меди удалялись полностью при их исходной концентрации 3,2-4,4 мг/дм³.

Применение ЭФЦ и ФЭЦ позволило снизить концентрации изучаемых катионов, однако эффективность их действия была ниже в сравнении с сорбентом марки Термоксид- 3A.

Механизм действия ионообменников в H-форме заключается в том, что катионы металлов коньяка обмениваются на ион водорода, вследствие чего рH напитка понижается на 0,1-0,2 единицы, а титруемая кислотность увеличивается на 0,2-0,3 г/дм 3 . Как показали проведенные дегустации, это приводит к появлению резкости во вкусе, исчезающей в процессе дальнейшего хранения (отдыха) коньяка.

Таблица 1 – Результаты сравнительного анализа эффективности действия различных ионообменников при обработке коньяков

	Массовая концентрация, мг/дм ³								
Образец коньяка	Na ⁺	K ⁺	Fe	Mg^{2+}	Ca ²⁺				
3 звездочки									
До обработки	67,6	14,8	11,1	6,4	9,7				
После обработки холодом	56,2	8,7	11,0	5,8	8,8				
После обработки ЭФЦ	32,7	4,2	3,3	1,3	1,4				
После обработки ФЭЦ	31,6	4,0	2,7	2,2	1,0				
После обработки Термоксид 3A, Н ⁺ -форма	10,5	0,4	0,4	1,2	нет				
4 звездочки									
До обработки холодом	61,2	12,7	12,4	7,7	7,4				
После обработки холодом	58,8	8,6	9,2	5,2	6,9				
После обработки ЭФЦ	36,2	5,7	4,2	3,3	3,0				
После обработки ФЭЦ	33,8	5,2	3,0	2,9	2,7				
После обработки Термоксид 3A, Н ⁺ -форма	14,7	1,0	3,1	1,8	0,6				
5 звездочек									
До обработки холодом	77,8	11,8	9,6	9,3	11,2				
После обработки холодом	76,2	9,7	5,7	8,3	10,4				
После обработки ЭФЦ	41,7	5,0	3,2	3,8	5,4				
После обработки ФЭЦ	42,4	4,6	3,2	3,2	4,6				
После обработки Термоксид 3A, H ⁺ -форма	16,2	1,6	2,5	1,0	0,8				
КВВК									
До обработки холодом	26,4	17,2	5,8	11,3	14,4				
После обработки холодом	21,2	10,3	4,4	8,8	12,1				
После обработки ЭФЦ	11,4	4,6	3,7	5,0	5,0				
После обработки ФЭЦ	10,7	4,4	3,2	5,2	4,8				
После обработки Термоксид 3A, H ⁺ -форма	11,5	3,3	2,0	1,5	1,3				

Представляет интерес исследование динамики изменения концентраций катионов металлов в процессе фильтрации коньяков через сорбент марки Термоксид-3А в водородной и натриевой форме (табл. 2). Через колонку, в которую внесено 20 г сорбента Термоксид, пропускали коньяк «З звездочки». Пробы для анализа отбирали через каждые 100 см³. Анализ катионов металлов проводили в каждых 100 см³ образца и в средней пробе, полученной после фильтрации всего объема коньяка 1 дм³. Проведенные исследования (табл. 2) показали, что при использовании сорбента Термоксид-3А в Н⁺-форме взаимодействие коньяка и сорбента протекает сразу же после фильтрации первой партии образца. При этом концентрация калия и натрия снижается примерно в 7 раз, магния — в 3,5 раза, кальция — в 2,3 раза, железа — в 4, а меди — в 2,5 раза. По мере дальнейшего пропускания коньяка через колонку с ионитом концентрация щелочных и щелочно-земельных элементов не изменяется, а железо полностью удаляется из обрабатываемого продукта.

Таблица 2 – Динамика изменения концентрации катионов в результате обработки коньяка «З звездочки» сорбентом марки Термоксид-ЗА

Domyyayız		Катион	Железо,	Медь,						
Вариант	калий	натрий	магний	кальций	$M\Gamma/дM^3$	$M\Gamma/дM^3$				
Контроль	29,6	23,8	7,4	7,4	2,3	6,7				
Термоксид-3A H ⁺ -форма										
1	4,7	3,6	2,2	3,3	0,6	2,5				
2	4,2	3,6	2,0	3,3	0,3	2,1				
3	3,5	3,2	2,0	3,1	нет	1,7				
4	3,3	3,0	2,0	3,0	нет	1,2				
5	3,3	3,0	2,0	2,6	нет	1,8				
6	3,1	2,8	2,0	2,2	нет	0,5				
7	3,0	2,8	2,0	2,0	нет	0,4				
8	2,7	3,0	2,3	2,0	нет	0,4				
9	2,5	2,6	2,4	2,0	0,2	0,7				
10	2,3	2,8	2,5	1,8	0,5	1,0				
В средней пробе	3,0	3,0	2,1	2,1	0,15	1,8				
Термоксид-ЗА Nа-форма										
1	11,2	58,7	5,8	4,5	1,0	2,4				
2	9,8	60,4	5,7	4,2	0,7	2,7				
3	7,4	63,2	5,3	4,0	0,4	2,7				
4	6,8	60,1	5,3	3,7	нет	2,5				
5	5,6	58,7	5,0	3,5	нет	2,6				
6	4,9	58,4	4,8	3,5	нет	2,3				
7	4,8	59,0	4,4	3,3	нет	2,3				
8	4,6	60,0	4,4	3,0	нет	1,9				
9	4,6	58,8	4,6	3,0	нет	2,2				
10	5,0	57,6	4,8	3,1	0,3	2,7				
В средней пробе	6,8	58,2	5,1	3,6	0,2	2,5				

В средней партии концентрация изучаемых катионов металлов была значительно меньше, чем в исходном необработанном коньяке. Так, концентрации калия в средней пробе ниже в 15 раз, натрия – в 6 раз, кальция – в 3 раза, железо и медь были удалены практически полностью.

Сравнивая полученные результаты с белым вином, можно отметить, что в коньяках суммарное количество сорбируемых катионов в сумме намного меньше. Возможно, это связано с большей скоростью фильтрации или спецификой состава коньяка, в котором все катионы, особенно кальций, связаны в прочные комплексы с лигнином и его производными, формирующими качество коньяка.

Аналогичные результаты получены при обработке коньяка «5 звездочек»: концентрация кальция в средней пробе снизилась до $1,2~{\rm Mr/дm^3}$ против $6,4~{\rm Mr/дm^3}$ в исходном необработанном образце.

При использовании сорбента марки Термоксид-3А в Na-форме отмечено существенное возрастание концентрации натрия в средней пробе коньяков обоих наименований.

Известно, что при концентрации натрия в коньяке свыше 20 мг/дм³ формируются осадки. Следовательно, увеличение его концентрации приводит к помутнению коньяка. Кроме того, отмечено изменение вкуса коньяков, появление интенсивных мыльных тонов и солоноватости.

Применение сорбента Термоксид -3A в Na-форме приводит к меньшему снижению концентрации калия, магния и кальция в сравнении с H^+ -формой сорбента. Это свидетельствует о снижении емкости катионного обмена при переводе сорбента в Na-форму.

Выводы. Для стабилизации коньяков к кристаллическим помутнениям и снижения концентрации катионов меди и железа целесообразно использование сорбента марки термоксид-3A в H⁺-форме.

Литература

- 1. Данилян А.В. Совершенствование технологии стабилизации коньяков с использованием высокоэффективных полимерных материалов : автореф. дисс. ... канд. техн. наук : 05.18.07 / Данилян Армен Владиславович. М.: 2009. 24 с.
- 2. Оганесянц Л.А., Линецкая А.Е., Данилян А.В., Песчанская В.А., Осипова В.П. Изучение минерального состава коньяков с целью повышения их качества // Интеграция фундаментальных и прикладных исследований основа развития современных аграрно-пищевых технологий: сб. трудов науч.-практ. конф. (5-6 сентября 2007 г., Углич). М.: Россельхозакадемия, 2007. С. 24.
- 3. Оганесянц Л.А., Линецкая А.Е., Осипова В.П., Данилян А.В. О минеральном составе коньячных спиртов // Виноделие и виноградарство. 2008. № 1. С. 24-25.
- 4. Оганесянц Л.А., Линецкая А.Е., Данилян А.В. Проблема стабилизации коньяков // Виноделие и виноградарство. 2005. № 1. С. 24-25.
 - 5. Cantagrel R. Les troubles et depots dans le Cognac. Station Viticole du BNIC. Franse. 2005 г.
 - 6. Скурихин И.М. Химия коньяка и бренди. М.: ДеЛи принт. 2005. 296 с.
- 7. Хиабахов Т.С. Основы технологии коньячного производства России. Новочеркасск: ЮРГТУ, 2001. 160 с.
- 8. Almeida J. Metabolic effects off furaldegydes and impacts of biotechnological processes//Appl. Microbiol Biotechnol. -2009. vol. 82 (4).-p.625-638
- 9. O'Flaherty B., Yang W., Sengupta S., Cholli A.L. Near-real time detection of impurities and wine samples: a novel approach // Association AVH 7 Symposium Reims, mars 2000,- P. 22-27.
- 10.Grandos J.Q., Mir M.V., Garsia-Serrana Contents Brandies: Againg markers // J. Agric. Food Chem. 1999, 44. P. 1378–1381.
- 11. Баев О.М., Фролова Ж.Н., Ползикова Г.П., Дьяченко М.В. Деметаллизация коньячной продукции поточным способом // «Магарач». Виноградарство и виноделие. 2014. № 2. С. 31-32.
- 12. Баев О.М., Фролова Ж.Н., Доценко С.В. Современные поточные способы обработки коньяков и коньячных спиртов // Виноградарство и виноделие в Молдове. 2007. №4 (10). С. 26-29.
- 13. Панасюк А.Л. Афон-302 новый препарат на основе НТФ для стабилизации винодельческой продукции // Виноград и вино России. 1998 г. № 2. С. 13-14.
- 14.Gonzalez-Vin M.A., Perez-Coello M.S., Salvador M.D. and Martin-Alvarez P.J. Changes in gas-chromatographic volatiles of young Airen wines during bottle storage // J. Agric. Food Chem 1996, 56 (4).
- 15. Александрова Г.П., Антипова И.А., Медведева С.А. Катионообменный сорбент на основе фосфорилированной целлюлозы // Новые достижения в химии и химической технологии растительного сырья: материалы II Всероссийской конференции (21-22 апреля 2005 г., Барнаул). Книга I. Барнаул: Алтайский университет, 2005. С. 36-38
- 16.3инченко В.И., Таран Н.Г., Шарыгин М.Л. Стабилизация вин при кристаллических и металлических помутнениях в поточных режимах. Виноградарство и виноделие в Молдове. 2004. No 4 $\,$ C $\,$ 17-20
- 17. Бранчуков Д.Н., Завьялов Ю.Ф. Эффективные способы сохранения качества коньяка // Ликероводочное производство и виноделие. 2011. № 10. С. 4-6.