УДК 632/951

УНИКАЛЬНАЯ РАЗРАБОТКА ВНИИЗ КОМПОЗИТНОГО ПРЕПАРАТА ДЛЯ КОНСЕРВИРОВАНИЯ ЗЕРНА ПРОТИВ НАСЕКОМЫХ И КЛЕЩЕЙ

Закладной Г. А., д-р биол. наук

Всероссийский научно-исследовательский институт зерна и продуктов его переработки — филиал Федерального государственного бюджетного научного учреждения «Федеральный научный центр пищевых систем им. В. М. Горбатова» РАН (Москва)

Реферам. Приведены результаты экспериментальных исследований смертности имаго 6 вредных видов жуков на зерне пшеницы, обработанном биинсектицидом в форме концентрата эмульсии с содержанием 400 г/л пиримифос-метила + 10 г/л бифентрина. Период полной защиты зерна от заражения *Laemophloeus ferrugineus* Steph., *Rhizopertha dominica* F., *Sitophilus oryzae* L., *Oryzaephilus surinamensis* L., *Sitophilus granarius* L. и *Tribolium confusum* Duv. составлял в месяцах соответственно: при норме расхода 2 мл/т - 12, 4, 1, 1, 1 и 0; при 3 мл/т - 12, 9, 4, 2, 2 и 1; при 4 мл/т - 12, 9, 8, 7, 2 и 1; при 6 мл/т - 12, 12, 12, 12, 12, 8 и 1; при 8 мл/т - 12, 12, 12, 12, 12 и 3.

Ключевые слова: вредители зерна, биинсектицид, пиримифос-метил, бифентрин, жуки, смертность, защита зерна

Summary. The results of the experimental investigations of the mortality of the adults of six harmful species of beetles on the wheat grain treated with a biinsecticide in the form of the concentrate of emulsion with the content 400 g/l of pirimiphos-methyl + 10 g/l bifenthrin are described. Period of the overall protection of grain from the infestation with *Laemophloeus ferrugineus* Steph., *Rhizopertha dominica* F., *Sitophilus oryzae* L., *Oryzaephilus surinamensis* L., *Sitophilus granarius* L. and *Tribolium confusum* Duv. comprised respectively (in months): with the dosage of 2 ml/t – 12, 4, 1, 1, 1 and 0; with 3 ml/t – 12, 9, 4, 2, 2 and 1; with 4 ml/t – 12, 9, 8, 7, 2 and 1; with 6 ml/t – 12, 12, 12, 12, 8 and 1; and with 8 ml/t – 12, 12, 12, 12, 12 and 3.

Key words: stored grain pests, insects, biinsecticide, pirimiphos-methyl, bifenthrin, beetles, mortality, grain protection

Введение. Одним из эффективных способов борьбы с вредителями хранящегося зерна в России является обработка его жидкими инсектицидами контактного действия [1-3]. К сожалению, ассортимент средств, разрешенных для такой обработки, ограничен в России двумя препаратами («Актеллик» и «Камикадзе»), действующим веществом которых служит пиримифос-метил. При этом регламентированная нормативными документами норма расхода пиримифос-метила (8 мг/кг) превышает максимально допустимый уровень его в зерне (7 мг/кг), установленный санитарными нормами. Это иногда препятствует проведению дезинсекции зерна на практике из-за риска задержки реализации зерна из-за сверхнормативного превышения в нем остатков пиримифос-метила.

В связи с этим нами выполнен цикл работ, нацеленных на создание биинсектицидного препарата, нормы расхода которого не превышают допустимые уровни действующих веществ в зерне и/или существенно снижают инсектицидную нагрузку на зерно. В результате исследования избирательной токсичности пиримифос-метила [4] и бифентрина [5] в отношении разных видов вредных насекомых предложен биинсектицид на их основе [6] и оптимизирован его состав [7].

Цель настоящего исследования состояла в уточнении регламентов обработки зерна созданным нами биинсектицидом путем установления реакции основных видов вредных жуков на его остатки при длительном хранении зерна.

Объекты и методы исследований. В качестве биотестов использовали имаго шести видов жуков – вредителей зерна (рисовый долгоносик *Sitophilus oryzae* L., амбарный долгоносик *S. granarius* L., зерновой точильщик *Rhizopertha dominica* F., малый мучной хру-

щак *Tribolium confusum* Duv., суринамский мукоед *Oryzaephilus surinamensis* L., короткоусый мукоед *Laemophloeus ferrugineus* Steph.), которые, по данным [8], представляют в России наибольшую угрозу для хранящегося зерна.

Насекомых без разделения на пол и возраст отбирали из многолетних лабораторных культур, выращенных при температуре (25 ± 2) °C и прежде не имевших контакта с пестицидами.

Испытывали биинсектицид, состав которого был оптимизирован в работе [7], в форме концентрата эмульсии с содержанием 400 г/л пиримифос-метила + 10 г/л бифентрина.

Зерно пшеницы влажностью $(14,5\pm0,5)\%$ в количестве по 10 кг на каждую из 5 испытанных норм расхода биинсектицида (2,3,4,6 и 8 мл/т) разравнивали слоем толщиной около 3 см на полиэтиленовой пленке на полу.

Готовили водные растворы с содержанием 0, 2, 3, 4, 6 и 8 мл биинсектицида в 1 л. Зерно обрабатывали с помощью распылителя из расчета 10 мл раствора на 10 кг зерна, тщательно перемешивали и после двухчасового подсыхания помещали внутрь бязевых мешков. Мешки с зерном укладывали в эксикаторы с пересыщенным раствором хлористого натрия, обеспечивавшего относительную влажность воздуха внутри эксикатора около 75 %, что соответствовало равновесной влажности зерна, близкой к 15 %. Температура хранения зерна колебалась в пределах 22–24 °C.

Ежемесячно в течение 12 месяцев от хранящегося обработанного и контрольного зерна отбирали пробы массой по 100 г в трех повторностях. Их помещали в пластмассовые стаканчики с герметичными крышками, подсаживали по 10 жуков шести видов и хранили в термостатах при температуре (25 ± 2)°С. Через 7 суток (по [7]) подсчитывали количество живых и мертвых жуков. Результаты выражали в процентах смертности в среднем из трех повторностей.

Обсуждение результатов. В табл. 1 приведены результаты оценки смертности жуков через 7 суток после подсадки их на зерно пшеницы в разные сроки после обработки его биинсектицидом при различных нормах расхода.

Можно заметить, что биинсектицид в норме расхода 2 мл/т обеспечивает полное уничтожение в зерне жуков $Sitophilus\ oryzae$, однако последействие его распространяется на период не более 1 месяца. С увеличением нормы расхода до 3, 4, 6 и 8 мл/т длительность защиты зерна от $S.\ oryzae$ неуклонно возрастает и достигает соответственно 4, 8, 12 и 12 месяцев.

В норме расхода 2 мл/т биинсектицид полностью уничтожает жуков Sitophilus granarius в зерне с последействием, как и в случае с S. oryzae, не более 1 месяца. Повышение нормы расхода до 3, 4, 6 и 8 мл/т удлиняет срок защиты зерна от S. granarius соответственно до 2, 2, 8 и 12 месяцев.

Остатки биинсектицида отличаются существенно большей биологической активностью в отношении жуков *Rhizopertha dominica*, нежели против *Sitophilus* spp. В нормах расхода 2, 3, 4, 6 и 8 мл/т биинсектицид обеспечивает защиту зерна от *Rh. dominica* в течение не менее чем 4, 9, 12 и 12 месяцев соответственно. По всей видимости, это можно объяснить большей стабильностью на зерне пиретроида бифентрина [3], который отвечает за поражение *Rh. dominica* в биинсектициде [5,6], по сравнению с фосфорорганическим компонентом пиримифос-метилом, который играет главенствующую роль в биологической активности в отношении жуков других видов [4, 6].

Биинсектицид в норме расхода 2 мл/т приводит к смерти жуков *Tribolium confusum* в зерне сразу после обработки, но не обладает последействием в отношении этого насекомого. С увеличением нормы расхода до 3, 4, 6 и 8 мл/т длительность защиты зерна от *T. confusum* возрастает соответственно до 1, 1, 1 и 3 месяцев. После трех месяцев биологическая активность остатков биинсектицида в отношении жуков *T. confusum* даже при максимальной норме расхода 8 мл/т неуклонно падает. Это также не удивительно, поскольку *T. confusum* отличается наибольшей природной устойчивостью к бифентрину и пиримифос-метилу среди исследованных видов жуков [4, 5].

Таблица 1 – Смертность жуков (%) через 7 суток после подсадки их на зерно пшеницы спустя разные сроки после обработки его биинсектицидом

пшеницы спустя разные сроки после обработки его биинсектицидом														
Норма					Срок п		работки							
расхода, мл/т	0	1	2	3	4	5	6	7	8	9	10	12		
Sitophilus oryzae L.														
0	0	0	0	0	0	0	0	0	0	0	0	0		
2	100	100	87	70	70	57	15	_	_	_	_	_		
3	100	100	100	100	100	83	70	77	77	80	63	33		
4	100	100	100	100	100	93	95	100	100	90	90	70		
6	100	100	100	100	100	100	100	100	100	100	100	100		
	Sitophilus granarius L.													
0	0	0	0	0	0	0	0	0	0	0	0	0		
2	100	100	63	27	27	10	15	0	_	_	_	_		
3	100	100	100	70	67	17	70	15	_	_	_	_		
4	100	100	100	87	73	23	95	15	_	_	_	_		
6	100	100	100	100	100	100	100	100	100	93	93	90		
8	100	100	100	100	100	100	100	100	100	100	100	100		
Rhizopertha dominica F.														
0	0	0	0	0	0	0	0	0	0	0	0	0		
2	100	100	100	100	100	77	67	65	65	100	50	37		
3	100	100	100	100	100	100	100	100	100	100	67	57		
4	100	100	100	100	100	100	100	100	100	100	80	77		
6	100	100	100	100	100	100	100	100	100	100	100	100		
8	100	100	100	100	100	100	100	100	100	100	100	100		
					olium co	nfusum	Duv.							
0	0	0	0	0	0	0	0	0	0	0	0	0		
2	100	67	27	3	0	0	0	_	_	_	27	100		
3	100	100	50	40	10	3	5	_	_	_	50	100		
4	100	100	87	27	10	7	15	_	_	_	77	100		
6	100	100	83	55	37	33	23	13	13	_	63	43		
8	100	100	100	100	87	56	40	33	20	13	80	73		
Oryzaephilus surinamensis L.														
0	0	0	0	0	0	0	0	0	0	0	0	0		
2	100	100	50	27	27	25	_	100	_	_	_	_		
3	100	100	93	93	67	65	63	100	_	73	57	27		
4	100	100	100	100	73	55	100	100	_	97	80	67		
6	100	100	100	100	100	100	100	100	100	100	100	100		
8	100	100	100	100	100	100	100	100	100	100	100	100		
							us Steph			-				
0	0	0	0	0	0	0	0	0	0	0	0	0		
2	100	100	100	100	100	100	100	100	100	100	100	100		
3	100	100	100	100	100	100	100	100	100	100	100	100		
4	100	100	100	100	100	100	100	100	100	100	100	100		
6	100	100	100	100	100	100	100	100	100	100	100	100		
8	100	100	100	100	100	100	100	100	100	100	100	100		

Остатки биинсектицида отличаются значительной биологической активностью в отношении жуков *Oryzaephilus surinamensis*. В нормах расхода 2, 3, 4, 6 и 8 мл/т они обеспечивают защиту зерна от заражения *O. surinamensis* в течение не менее чем 1, 3, 7, 12 и 12 месяцев соответственно.

Наконец, полученные нами данные свидетельствуют о крайне высокой природной чувствительности жуков *Laemophloeus ferrugineus* к остаткам биинсектицида. В отличие

от жуков других видов, уже при норме расхода 2 мл/т обработанное зерно остается полностью свободным от L. ferrugineus в течение не менее чем 12 месяцев.

Данные, представленные в табл. 1, показывают, что для промышленной обработки зерна против комплекса основных вредных видов насекомых целесообразно рекомендовать биинсектицид в нормах расхода в пределах от 2 до 8 мл/т. При этом норму расхода следует дифференцировать в зависимости от вида вредителя и необходимой продолжительности консервирования хранящегося зерна против насекомых.

Выводы. Рекомендуемые режимы обработки приведены в табл. 2, где виды вредителей расположены в порядке увеличения устойчивости жуков к остаткам биинсектицида на зерне в процессе его хранения в течение 12 месяцев.

Таблица 2 – Режимы дезинсекции и консервирования зерна биинсектицидом при оценке эффективности через 7 суток после попадания жуков в зерно

Виды насекомых	Период (число месяцев) полной защиты зерна от заражения насекомыми при нормах расхода биинсектицида в мл/т							
	2	3	4	6	8			
Laemophloeus ferrugineus Steph.	12	12	12	12	12			
Rhizopertha dominica F.	4	9	9	12	12			
Sitophilus oryzae L.	1	4	8	12	12			
Oryzaephilus surinamensis L.	1	2	7	12	12			
Sitophilus granarius L.	1	2	2	8	12			
Tribolium confusum Duv.	0	1	1	1	3			

Пользоваться этими режимами в практике обработки зерна просто. Например, если зерно необходимо хранить в течение 8 месяцев, и оно заселено только рисовым долгоносиком, следует применить норму расхода биинсектицида 4 мл/т, а при месячном сроке хранения достаточно будет 2 мл/т. В случае присутствия в зерне нескольких видов насекомых следует выбирать режим обработки, эффективный для наиболее устойчивого вида.

Литература

- 1. Закладной, Г.А. Вредители хлебных запасов. Рекомендации научно-исследовательского института зерна и продуктов его переработки: Приложение к ж. «Защита и карантин растений». 1999. № 8. 16 с.
- 2. Закладной, Г.А. Вредители хлебных запасов. Изд. второе, дополненное // Приложение к ж. «Защита и карантин растений». -2006. -№ 6. -24 с.
- 3. Закладной, Γ .А. Биологическая оценка пиримифос-метила как средства дезинсекции зерна / Γ .А. Закладной, А.Л. Догадин, А.В. Влащенко // Научно-инновационные аспекты хранения и переработки зерна: монография к 85-летию Γ НУ ВНИИЗ Россельхозакадемии. M., 2014. C. 290-297.
- 4. Закладной, Г.А. Биологическая оценка бифентрина как средства дезинсекции зерна / Г. А. Закладной, А. Л. Догадин, А. В. Влащенко // Научно-инновационные аспекты хранения и переработки зерна: монография к 85-летию ГНУ ВНИИЗ Россельхозакадемии. М., 2014. С. 298-303.
- 5. Закладной, Г.А. Формирование биинсектицида и исследование его как средства дезинсекции зерна / Г.А. Закладной, А. Л. Догадин, А. В. Влащенко // Научно-инновационные аспекты хранения и переработки зерна: монография к 85-летию ГНУ ВНИИЗ Россельхозакадемии. М., $2014. C.\ 304-313.$
- 6. Путеводитель по вредителям хлебных запасов и простор как средство борьбы с ними / Γ . А. Закладной [и др.]. М.: М Γ ОУ. 2003. 108 с.
- 7. Закладной, Г.А. Реакция некоторых *Coleoptera* основных вредителей зерна на совместное действие пиримифос-метила и бифентрина / Г.А. Закладной // Энтомологическое обозрение. 2014. Вып. 93, № 3. С. 527-531.
- 8. Закладной, Г.А. Современные направления защиты хранящегося зерна от насекомых: дис... докт. биол. наук / Закладной Геннадий Алексеевич. М, 1985. 426 с.